Probabilistic design of aluminum sheet drawing for reduced risk of wrinkling and fracture

نویسندگان

  • Wenfeng Zhang
  • Rajiv Shivpuri
چکیده

The exclusion of inherent process variations in the current deterministic design methods for sheet metal forming can lead to very unreliable result that may cause high scrap rate, frequent rework, machine shut down and thus huge loss of profit. In this paper, a general approach is presented to quantify the uncertainties and to incorporate them into RSM model so as to conduct probabilistic based optimization. As an application, deep drawing process of Hishida part is analyzed. Given the blank shape and tooling, a probabilistic design is successfully carried out to find the optimal combination of blank holder force and friction coefficient under the presence of variation of material properties. The result shows that by the probabilistic design, the quality index (average defect rates of wrinkling and fracture) improved (reduced) 42% over the traditional deterministic design. In a mass production environment, the achieved quality improvement is huge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using the Taguchi Method for Experimental and Numerical Investigations on the Square-Cup Deep-Drawing Process for Aluminum/Steel Laminated Sheets

The effects of input parameters on the square-cup deep-drawing process for a two-layer aluminum/steel laminated sheet were investigated. Each layer was 0.7 mm thick, and the input parameters covered in the investigation were punch nose radius (PR), die shoulder radius (DR), the clearance between a punch and die (CPD), blank holder force (BHF), and layer arrangement (LA). The effects of the inpu...

متن کامل

An Investigation into the Deep Drawing of Fiber-Metal Laminates based on Glass Fiber Reinforced Polypropylene

Abstract   Fiber-metal laminates (FMLs) are new type of composite materials which could improve defects of traditional composites in ductility, formability, impact and damage tolerance. Drawing behavior of a thermoplastic based FML was investigated consisting of glass-fiber reinforced polypropylene composite laminate and aluminum AA1200-O as the core and skin layers, respectively. The effects o...

متن کامل

Experimental and Numerical Investigation of Warm Deep Drawing Process of AA5052 Aluminum Alloy

Aluminum alloys have a high strength-to-weight ratio and proper anti-corrosion properties that are used in the automotive, shipbuilding and aerospace industries. The major problem with forming aluminum sheets is the low formability of aluminum sheets at room temperature. Therefore, in the present study, warm deep drawing (WDD) of AA5052-O aluminum alloy sheets with a thickness of 1mm was invest...

متن کامل

Prediction of earing in deep drawing of anisotropic aluminum alloy sheet using BBC2003 yield criterion

This paper investigates the earing phenomenon in deep drawing of AA3105 aluminum alloy, experimentally and numerically. Earing defect is mainly attributed to the plastic anisotropy of sheet metal. In order to control such defect, predicting the evolution of ears in sheet metal forming analyses becomes indispensable. In this regard, the present study implements the advanced yield criterion BBC20...

متن کامل

The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet

The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2009